當要求鋼焊后在690℃退火長達24h時,為了仍能保證,不致降低母材的力學性能,就應當把淬火后的回火溫度選得低些,一般選在650℃。鋼焊后退火要求在較低的溫度610℃下進行,其回火參數(shù)約為19,所以淬火后就可以直接在得到力學性能的溫度650℃下回火。
關于回火參數(shù)的計算,文獻中多有報道。在此,應當把淬火后的回火、焊接的中間退火和焊后退火等不同時期的溫度和時間換算成在同一溫度不同當量保溫時間下的回火,然后再按此溫度及當量時間的總和計算出回火參數(shù)。
建業(yè)鍛壓鍛件熱處理加熱時,根據(jù)鍛件入爐時爐溫的不同可分為三種情況。 冷鍛件裝入爐溫已升到淬火或正火溫度的爐內加熱,這是小型零件常用的一種加熱方式,但對大型鍛件來說是屬于快速加熱范圍了,隨著鍛件冶金質量的提高,這種加熱方式在大型鍛件上的應用也越來越多了。
鍛件回火階段,碳化物轉變。在此溫度范圍,由于溫度較高,碳原子的擴散能力較強,鐵原子也恢復了擴散能力,馬氏體分解和殘余奧氏體分解析出的過渡碳化物將轉變?yōu)檩^穩(wěn)定的滲碳體。隨著碳化物的析出和轉變,馬氏體中碳的質量分數(shù)不斷降低,馬氏體的晶格畸變消失,馬氏體轉變?yōu)殍F素體,得到鐵素體基體內分布著細小粒狀(或片狀)滲碳體的組織,該組織稱為回火托氏體。此階段淬火應力基本消除,硬度有所下降,塑性、韌性得到提高。建業(yè)鍛壓
鍛件回火階段,碳化物的聚集長大和鐵素體的再結晶。由于回火溫度已經很高,碳原子和鐵原子均具有較強的擴散能力,第三階段形成的滲碳體薄片將不斷球化并長大。在500-600℃以上時,α相逐漸發(fā)生再結晶,使鐵素體形態(tài)失去原來的板條狀或片狀,而形成多邊形晶粒。此時組織為鐵素體基體上分布著粒狀碳化物,該組織稱為回火索氏體。回火索氏體具有良好的綜合力學性能。此階段內應力和晶格畸變完全消除。